Vercel
@computesdk/vercel
Section titled “@computesdk/vercel”Vercel provider for ComputeSDK - Execute Node.js and Python code in secure, isolated Vercel sandboxes.
Installation
Section titled “Installation”npm install @computesdk/vercel
Authentication
Section titled “Authentication”Vercel provider supports two authentication methods:
Method 1: OIDC Token (Recommended)
Section titled “Method 1: OIDC Token (Recommended)”The simplest way to authenticate. Vercel manages token expiration automatically.
Development:
vercel env pull # Downloads VERCEL_OIDC_TOKEN to .env.local
Production: Vercel automatically provides VERCEL_OIDC_TOKEN
in your deployment environment.
Method 2: Access Token + Team/Project IDs
Section titled “Method 2: Access Token + Team/Project IDs”Alternative method using explicit credentials:
export VERCEL_TOKEN=your_vercel_token_here
export VERCEL_TEAM_ID=your_team_id_here
export VERCEL_PROJECT_ID=your_project_id_here
Get your token from Vercel Account Tokens
With ComputeSDK
Section titled “With ComputeSDK”import { compute } from 'computesdk';
import { vercel } from '@computesdk/vercel';
// Set as default provider
compute.setConfig({
provider: vercel({ runtime: 'node' })
});
// Create sandbox
const sandbox = await compute.sandbox.create({});
// Execute Node.js code
const result = await sandbox.runCode('console.log("Hello from Vercel!");');
console.log(result.stdout); // "Hello from Vercel!"
// Execute Python code
const pythonResult = await sandbox.runCode('print("Hello from Python!")', 'python');
console.log(pythonResult.stdout); // "Hello from Python!"
// Clean up
await compute.sandbox.destroy(sandbox.sandboxId);
Direct Usage
Section titled “Direct Usage”import { vercel } from '@computesdk/vercel';
// Create provider with explicit config
const provider = vercel({
token: 'your-token',
teamId: 'your-team-id',
projectId: 'your-project-id',
runtime: 'python',
timeout: 600000 // 10 minutes
});
// Use with compute singleton
const sandbox = await compute.sandbox.create({ provider });
Configuration
Section titled “Configuration”Environment Variables
Section titled “Environment Variables”# Method 1: OIDC Token (Recommended)
export VERCEL_OIDC_TOKEN=your_oidc_token_here
# Method 2: Traditional
export VERCEL_TOKEN=your_vercel_token_here
export VERCEL_TEAM_ID=your_team_id_here
export VERCEL_PROJECT_ID=your_project_id_here
Configuration Options
Section titled “Configuration Options”interface VercelConfig {
/** Vercel API token - if not provided, will use VERCEL_TOKEN env var */
token?: string;
/** Vercel team ID - if not provided, will use VERCEL_TEAM_ID env var */
teamId?: string;
/** Vercel project ID - if not provided, will use VERCEL_PROJECT_ID env var */
projectId?: string;
/** Default runtime environment */
runtime?: 'node' | 'python';
/** Execution timeout in milliseconds */
timeout?: number;
}
Features
Section titled “Features”- ✅ Code Execution - Node.js 22 and Python 3.13 runtime support
- ✅ Command Execution - Run shell commands in sandbox
- ✅ Filesystem Operations - Full file system access via shell commands
- ✅ Auto Runtime Detection - Automatically detects Python vs Node.js
- ✅ Long-running Tasks - Up to 45 minutes execution time
- ✅ Global Infrastructure - Runs on Vercel’s global network
API Reference
Section titled “API Reference”Code Execution
Section titled “Code Execution”// Execute Node.js code
const result = await sandbox.runCode(`
const data = { message: "Hello from Node.js" };
console.log(JSON.stringify(data));
`, 'node');
// Execute Python code
const result = await sandbox.runCode(`
import json
data = {"message": "Hello from Python"}
print(json.dumps(data))
`, 'python');
// Auto-detection (based on code patterns)
const result = await sandbox.runCode('print("Auto-detected as Python")');
Command Execution
Section titled “Command Execution”// List files
const result = await sandbox.runCommand('ls', ['-la']);
// Install packages (Node.js)
const result = await sandbox.runCommand('npm', ['install', 'lodash']);
// Install packages (Python)
const result = await sandbox.runCommand('pip', ['install', 'requests']);
// Run scripts
const result = await sandbox.runCommand('node', ['script.js']);
Filesystem Operations
Section titled “Filesystem Operations”// Write file
await sandbox.filesystem.writeFile('/tmp/hello.py', 'print("Hello World")');
// Read file
const content = await sandbox.filesystem.readFile('/tmp/hello.py');
// Create directory
await sandbox.filesystem.mkdir('/tmp/data');
// List directory contents
const files = await sandbox.filesystem.readdir('/tmp');
// Check if file exists
const exists = await sandbox.filesystem.exists('/tmp/hello.py');
// Remove file or directory
await sandbox.filesystem.remove('/tmp/hello.py');
Sandbox Management
Section titled “Sandbox Management”// Get sandbox info
const info = await sandbox.getInfo();
console.log(info.id, info.provider, info.status);
// Get existing sandbox
const existing = await compute.sandbox.getById(provider, 'sandbox-id');
// Destroy sandbox
await compute.sandbox.destroy(provider, 'sandbox-id');
// Note: Vercel doesn't support listing all sandboxes
// Each sandbox is ephemeral and single-use
Runtime Detection
Section titled “Runtime Detection”The provider automatically detects the runtime based on code patterns:
Python indicators:
print(
statementsimport
statementsdef
function definitions- Python-specific syntax (
f"
,__
, etc.)
Default: Node.js for all other cases
Error Handling
Section titled “Error Handling”try {
const result = await sandbox.runCode('invalid code');
} catch (error) {
if (error.message.includes('Missing Vercel authentication')) {
console.error('Set VERCEL_OIDC_TOKEN or VERCEL_TOKEN environment variables');
} else if (error.message.includes('authentication failed')) {
console.error('Check your Vercel credentials');
} else if (error.message.includes('team/project configuration failed')) {
console.error('Check your VERCEL_TEAM_ID and VERCEL_PROJECT_ID');
} else if (error.message.includes('Syntax error')) {
console.error('Code has syntax errors');
}
}
Web Framework Integration
Section titled “Web Framework Integration”Use with web frameworks via the request handler:
import { handleComputeRequest } from 'computesdk';
import { vercel } from '@computesdk/vercel';
export async function POST(request: Request) {
return handleComputeRequest({
request,
provider: vercel({ runtime: 'node' })
});
}
Examples
Section titled “Examples”Node.js Web Server Simulation
Section titled “Node.js Web Server Simulation”const sandbox = await compute.sandbox.create({
provider: vercel({ runtime: 'node' })
});
const result = await sandbox.runCode(`
const http = require('http');
const url = require('url');
// Simulate API endpoints
const routes = {
'/api/users': () => ({
users: [
{ id: 1, name: 'Alice', role: 'Developer' },
{ id: 2, name: 'Bob', role: 'Designer' }
]
}),
'/api/health': () => ({
status: 'healthy',
timestamp: new Date().toISOString()
})
};
// Process request
const path = '/api/users';
const response = routes[path] ? routes[path]() : { error: 'Not found' };
console.log('Response:', JSON.stringify(response, null, 2));
`);
console.log(result.stdout);
Python Data Processing
Section titled “Python Data Processing”const sandbox = await compute.sandbox.create({
provider: vercel({ runtime: 'python' })
});
const result = await sandbox.runCode(`
import json
import statistics
from collections import Counter
# Sample data
sales_data = [
{"product": "laptop", "quantity": 5, "price": 999},
{"product": "mouse", "quantity": 20, "price": 25},
{"product": "keyboard", "quantity": 15, "price": 75},
{"product": "laptop", "quantity": 3, "price": 999},
{"product": "mouse", "quantity": 10, "price": 25}
]
# Aggregate sales
product_sales = {}
for sale in sales_data:
product = sale["product"]
revenue = sale["quantity"] * sale["price"]
product_sales[product] = product_sales.get(product, 0) + revenue
# Calculate statistics
revenues = list(product_sales.values())
total_revenue = sum(revenues)
avg_revenue = statistics.mean(revenues)
print(f"Total Revenue: ${total_revenue}")
print(f"Average Revenue per Product: ${avg_revenue:.2f}")
print("\\nRevenue by Product:")
for product, revenue in sorted(product_sales.items(), key=lambda x: x[1], reverse=True):
print(f" {product}: ${revenue}")
`);
console.log(result.stdout);
Filesystem Operations Pipeline
Section titled “Filesystem Operations Pipeline”const sandbox = await compute.sandbox.create({
provider: vercel({ runtime: 'python' })
});
// Create project structure
await sandbox.filesystem.mkdir('/tmp/project');
await sandbox.filesystem.mkdir('/tmp/project/data');
await sandbox.filesystem.mkdir('/tmp/project/output');
// Create configuration file
const config = {
project_name: "Vercel Data Pipeline",
version: "1.0.0",
settings: {
input_format: "json",
output_format: "csv",
debug: true
}
};
await sandbox.filesystem.writeFile(
'/tmp/project/config.json',
JSON.stringify(config, null, 2)
);
// Create sample data
const sampleData = [
{ id: 1, name: "Alice", department: "Engineering", salary: 95000 },
{ id: 2, name: "Bob", department: "Marketing", salary: 75000 },
{ id: 3, name: "Charlie", department: "Engineering", salary: 105000 },
{ id: 4, name: "Diana", department: "Sales", salary: 85000 }
];
await sandbox.filesystem.writeFile(
'/tmp/project/data/employees.json',
JSON.stringify(sampleData, null, 2)
);
// Process data
const result = await sandbox.runCode(`
import json
import csv
from collections import defaultdict
# Read configuration
with open('/tmp/project/config.json', 'r') as f:
config = json.load(f)
print(f"Running {config['project_name']} v{config['version']}")
# Read employee data
with open('/tmp/project/data/employees.json', 'r') as f:
employees = json.load(f)
# Process data - calculate department statistics
dept_stats = defaultdict(list)
for emp in employees:
dept_stats[emp['department']].append(emp['salary'])
# Calculate averages
results = []
for dept, salaries in dept_stats.items():
avg_salary = sum(salaries) / len(salaries)
results.append({
'department': dept,
'employee_count': len(salaries),
'average_salary': round(avg_salary, 2),
'total_salary': sum(salaries)
})
# Sort by average salary
results.sort(key=lambda x: x['average_salary'], reverse=True)
# Write results as JSON
with open('/tmp/project/output/department_stats.json', 'w') as f:
json.dump(results, f, indent=2)
# Write results as CSV
with open('/tmp/project/output/department_stats.csv', 'w', newline='') as f:
writer = csv.DictWriter(f, fieldnames=['department', 'employee_count', 'average_salary', 'total_salary'])
writer.writeheader()
writer.writerows(results)
print("Processing complete!")
print(f"Generated {len(results)} department statistics")
# Print summary
for result in results:
print(f"{result['department']}: {result['employee_count']} employees, avg salary ${result['average_salary']}")
`);
console.log('Execution Output:', result.stdout);
// Read and display results
const jsonResults = await sandbox.filesystem.readFile('/tmp/project/output/department_stats.json');
const csvResults = await sandbox.filesystem.readFile('/tmp/project/output/department_stats.csv');
console.log('JSON Results:', jsonResults);
console.log('CSV Results:', csvResults);
// List all generated files
const outputFiles = await sandbox.filesystem.readdir('/tmp/project/output');
console.log('Generated files:');
outputFiles.forEach(file => {
console.log(` ${file.name} (${file.size} bytes)`);
});
Package Installation and Usage
Section titled “Package Installation and Usage”// Node.js example with package installation
const sandbox = await compute.sandbox.create({
provider: vercel({ runtime: 'node' })
});
// Install lodash
const installResult = await sandbox.runCommand('npm', ['install', 'lodash']);
console.log('Install result:', installResult.stdout);
// Use lodash in code
const result = await sandbox.runCode(`
const _ = require('lodash');
const data = [
{ name: 'Alice', age: 25, city: 'New York' },
{ name: 'Bob', age: 30, city: 'San Francisco' },
{ name: 'Charlie', age: 35, city: 'Chicago' }
];
// Group by city
const grouped = _.groupBy(data, 'city');
console.log('Grouped by city:', JSON.stringify(grouped, null, 2));
// Calculate average age
const avgAge = _.meanBy(data, 'age');
console.log('Average age:', avgAge);
// Find oldest person
const oldest = _.maxBy(data, 'age');
console.log('Oldest person:', oldest.name);
`);
console.log(result.stdout);
Best Practices
Section titled “Best Practices”- Authentication: Use OIDC token method when possible for simpler setup
- Resource Management: Destroy sandboxes when done (they’re ephemeral anyway)
- Error Handling: Use try-catch blocks for robust error handling
- Timeouts: Set appropriate timeouts for long-running tasks (up to 45 minutes)
- File Organization: Use the filesystem API to organize project files
- Package Installation: Install packages at runtime as needed
Limitations
Section titled “Limitations”- Ephemeral Sandboxes: Each sandbox is single-use and cannot be reconnected to
- No Sandbox Listing: Vercel doesn’t support listing all sandboxes
- No Interactive Terminals: Terminal operations are not supported
- Memory Limits: Subject to Vercel sandbox memory constraints (2048 MB per vCPU)
- Execution Time: Maximum 45 minutes execution time
- Network Access: Limited outbound network access